Three-Dimensional Coverage Path Planning for Cooperative Autonomous Underwater Vehicles: A Swarm Migration Genetic Algorithm Approach

Author:

Xie Yangmin1,Hui Wenbo2,Zhou Dacheng1,Shi Hang3ORCID

Affiliation:

1. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, China

2. School of Future Technology, Shanghai University, Shanghai 200444, China

3. School of Department of Automation, Shanghai University, Shanghai 200444, China

Abstract

Cooperative marine exploration tasks involving multiple autonomous underwater vehicles (AUVs) present a complex 3D coverage path planning challenge that has not been fully addressed. To tackle this, we employ an auto-growth strategy to generate interconnected paths, ensuring simultaneous satisfaction of the obstacle avoidance and space coverage requirements. Our approach introduces a novel genetic algorithm designed to achieve equivalent and energy-efficient path allocation among AUVs. The core idea involves defining competing gene swarms to facilitate path migration, corresponding to path allocation actions among AUVs. The fitness function incorporates models for both energy consumption and optimal path connections, resulting in iterations that lead to optimal path assignment among AUVs. This framework for multi-AUV coverage path planning eliminates the need for pre-division of the working space and has proven effective in 3D underwater environments. Numerous experiments validate the proposed method, showcasing its comprehensive advantages in achieving equitable path allocation, minimizing overall energy consumption, and ensuring high computational efficiency. These benefits contribute to the success of multi-AUV cooperation in deep-sea information collection and environmental surveillance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3