Abstract
Initiated by studies on the mechanism of formation of the skeletons of the evolutionary oldest still extant multicellular animals, the sponges (phylum Porifera) have provided new insights into the mechanism of formation of the Ca-phosphate/hydroxyapatite skeleton of vertebrate bone. Studies on the formation of the biomineral skeleton of sponges revealed that both the formation of the inorganic siliceous skeletons (sponges of the class of Hexactinellida and Demospongiae) and of the calcareous skeletons (class of Calcarea) is mediated by enzymes (silicatein: polymerization of biosilica; and carbonic anhydrase: deposition of Ca-carbonate). Detailed studies of the initial mineralization steps in human bone-forming cells showed that this process is also controlled by enzymes, starting with the deposition of Ca-carbonate bio-seeds, mediated by carbonic anhydrases-II and -IX, followed by non-enzymatic transformation of the formed amorphous Ca-carbonate deposits into amorphous Ca-phosphate and finally hydroxyapatite crystals. The required phosphate is provided by enzymatic (alkaline phosphatase-mediated) degradation of an inorganic polymer, polyphosphate (polyP), which also acts as a donor for chemically useful energy in this process. These new discoveries allow the development of novel biomimetic strategies for treatment of bone diseases and defects.
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献