Burn Severity Effect on the Short-Term Functional Response of Quercus ilex after Fire

Author:

Parra Antonio1ORCID,Hinojosa M. Belén1ORCID

Affiliation:

1. Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, 45071 Toledo, Spain

Abstract

Understanding how fire severity affects resprouting plants during post-fire regeneration is key to anticipating Mediterranean vegetation vulnerability in a context of increasingly large fires with high intensity and severity due to climate change. Here, we monitored the water status, leaf gas exchange, and plant growth in holm oaks (Quercus ilex) of central Spain burned with different fire severity throughout the first post-fire year. The Q. ilex burned with high severity (HB+) showed higher water potential and shoot growth than those burned with low severity (LB+) or unburned (B−), especially during spring and summer. In summer, resprouting HB+ and LB+ plants exhibited higher carbon assimilation than unburned ones. Moreover, we also found that plants with higher water availability and growth, i.e., HB+ individuals, had higher specific leaf area and lower water use efficiency. Overall, our study shows that holm oak forests exhibit high plasticity to fire and that Q. ilex burned with high severity have a faster short-term regeneration than those burned with low severity. However, this rapid regeneration is based on a less conservative water-use strategy, which could jeopardize their populations in case of extreme drought events increasingly common in the current context of climate change.

Funder

University of Castilla-La Mancha

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3