Abstract
Strain gage type six-axis force/moment (F/M) sensors have been largely studied and implemented in industrial applications by using an external data acquisition board (DAQ). The use of external DAQs will ill-affect accuracy and crosstalk due to the possibility of voltage drop through the wire length. The most recent research incorporated DAQ within a relatively small F/M sensor, but only for sensors of the capacitance and optical types. This research establishes the integration of a high-efficiency DAQ on six-axis F/M sensor with a revolutionary arrangement of 32 strain gages. The updated structural design was optimized using the sequential quadratic programming method and validated using Finite Element Analysis (FEA). A new, integrated DAQ system was designed, tested, and compared to commercial DAQ systems. The proposed six-axis F/M sensor was examined with the calibrated jig. The results show that the measurement error and crosstalk have been significantly reduced to 1.15% and 0.68%, respectively, the best published combination at this moment.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献