Abstract
Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and it is becoming increasingly important as a hospital-associated (nosocomial) infection. It has also been isolated from environmental soil and water samples. In this work, unlike conventional medical methods like antibiotics, the influence of atmospheric-pressure cold plasma on this bacterium is evaluated by means of a colony count technique and scanning electron microscopy. The plasma used here refers to streamers axially propagating into a helium channel penetrating the atmospheric air. The plasma is probed with high resolution optical emission spectroscopy and copious reactive species are unveiled under low-temperature conditions. Based on the experimental results, post-treatment (delayed) biochemical effects on Acinetobacter baumannii and morphological modifications appear dominant, leading to complete deactivation of this bacterium.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献