Solidification Cracking Restraining Mechanism of Al-Cu-Mg-Zn Alloy Welds Using Cold Metal Transfer Technique

Author:

Li Zhuoxin,Ou Lingshan,Wang YipengORCID,Li HongORCID,Bober MariuszORCID,Senkara JacekORCID,Zhang Yu

Abstract

Aluminum alloy 7075 (with 7055 and 7150 filler wires) was welded using a digital welding machine that can switch arc mode between MIG, CMT and CMT+P modes. The transverse-motion weldability test of joints welded under different arc modes showed that the solidification cracking susceptibility was lower in CMT-technique-based welds than in MIG welds. The temperature cycle of the welding pool under different arc modes was recorded using mini-thermocouples, which showed that the cooling rate was lower in CMT welded samples than in MIG welded samples. The low cooling rate promoted the growth of α-Al dendrites through the back diffusion effect. Electron probe micro-analysis showed that micro-segregation of the α-Al dendrites was lower in the CMT welded samples than in the MIG welded samples. The T-(fAl)1/2 curve of each weld was calculated, which showed that CMT-based welding enhanced the bridging of adjacent α-Al dendrites, reducing the tendency for solidification cracking.

Funder

National Natural Science Foundation of China

The 38th China-Poland intergovernmental Joint S&T Committee Meeting, Personal Exchange Project

China-CEEC Joint Education Project for Higher Education

International Research Cooperation Seed Fund of Beijing University of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3