Meta-Learner Hybrid Models to Classify Hyperspectral Images

Author:

AL-Alimi DalalORCID,Al-qaness Mohammed A. A.ORCID,Cai ZhihuaORCID,Dahou Abdelghani,Shao Yuxiang,Issaka Sakinatu

Abstract

Hyperspectral (HS) images are adjacent band images that are generally used in remote-sensing applications. They have numerous spatial and spectral information bands that are extremely useful for material detection in various fields. However, their high dimensionality is a big challenge that affects their overall performance. A new data normalization method was developed to enhance the variations and data distribution using the output of principal component analysis (PCA) and quantile transformation, called QPCA. This paper also proposes a novel HS images classification framework using the meta-learner technique to train multi-class and multi-size datasets by concatenating and training the hybrid and multi-size kernel of convolutional neural networks (CNN). The high-level model works to combine the output of the lower-level models and train them with the new input data, called meta-learner hybrid models (MLHM). The proposed MLHM framework with our external normalization (QPCA) improves the accuracy and outperforms other approaches using three well-known benchmark datasets. Moreover, the evaluation outcomes showed that the QPCA enhanced the framework accuracy by 13% for most models and datasets and others by more than 25%, and MLHM provided the best performance.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperspectral image classification using graph convolutional network: A comprehensive review;Expert Systems with Applications;2024-12

2. Assessing Independent Component Transformations for Improved Object Recognition in Hyper Spectral;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

3. Two-Stream Networks for Contrastive Learning in Hyperspectral Image Classification;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. PRAT: Accurate object tracking based on progressive attention;Engineering Applications of Artificial Intelligence;2023-11

5. Nectarine Disease Identification Based on Color Features and Label Sparse Dictionary Learning with Hyperspectral Images;Applied Sciences;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3