Abstract
Hyperspectral (HS) images are adjacent band images that are generally used in remote-sensing applications. They have numerous spatial and spectral information bands that are extremely useful for material detection in various fields. However, their high dimensionality is a big challenge that affects their overall performance. A new data normalization method was developed to enhance the variations and data distribution using the output of principal component analysis (PCA) and quantile transformation, called QPCA. This paper also proposes a novel HS images classification framework using the meta-learner technique to train multi-class and multi-size datasets by concatenating and training the hybrid and multi-size kernel of convolutional neural networks (CNN). The high-level model works to combine the output of the lower-level models and train them with the new input data, called meta-learner hybrid models (MLHM). The proposed MLHM framework with our external normalization (QPCA) improves the accuracy and outperforms other approaches using three well-known benchmark datasets. Moreover, the evaluation outcomes showed that the QPCA enhanced the framework accuracy by 13% for most models and datasets and others by more than 25%, and MLHM provided the best performance.
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献