Abstract
Many deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN), have been successfully applied to extracting deep features for hyperspectral tasks. Hyperspectral image classification allows distinguishing the characterization of land covers by utilizing their abundant information. Motivated by the attention mechanism of the human visual system, in this study, we propose a spectral-spatial attention network for hyperspectral image classification. In our method, RNN with attention can learn inner spectral correlations within a continuous spectrum, while CNN with attention is designed to focus on saliency features and spatial relevance between neighboring pixels in the spatial dimension. Experimental results demonstrate that our method can fully utilize the spectral and spatial information to obtain competitive performance.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
220 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献