Abstract
Experimental turbulence measurements of scour hole downstream of bed sills in alluvial channels with non-cohesive sediments are investigated. Using an Acoustic Doppler Velocimeter (ADV), the flow velocity-field within the equilibrium scour hole was comprehensively measured. In this study, we especially focus on the flow hydrodynamic structure in the scour hole at equilibrium. In addition to the flow velocity distribution in the equilibrium scour hole, the turbulence intensities, the Reynolds shear stresses, the turbulent kinetic energy, and the turbulent length scales are analyzed. Since the prediction of equilibrium scour features is always very uncertain, in this study and based on laboratory turbulence measurements, we apply the phenomenological theory of turbulence to predict the maximum equilibrium scour depth. With this approach, we obtain a new scaling of the maximum scour depth at equilibrium, which is validated using experimental data, satisfying the validity of a spectral exponent equal to −5/3. The proposed scaling shows a quite reasonable accuracy in predicting the equilibrium scour depth in different hydraulic structures.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献