Affiliation:
1. Department of Electronic Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea
2. Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
Abstract
This paper presents a comparative study on coordinated control of path tracking and vehicle stability for autonomous vehicles on low-friction roads. Generally, a path-tracking controller designed on high-friction roads cannot provide good performance under low-friction conditions. To cope with the problem, a coordinated control between path tracking and vehicle stability has been proposed to date. In this paper, three types of coordinated controllers are classified according to the controller structure. As an actuator, front-wheel steering, four-wheel steering, and four-wheel independent braking and driving are adopted. A common feature of these types of controllers is that front steering and yaw moment control are adopted as control inputs. To convert the yaw moment control into tire forces generated by combinations of multiple actuators, a control allocation method is applied. For each type, a controller is designed and simulated using vehicle simulation software. From the simulation results, a performance comparison among those controller types is carried out. Through comparison, it is shown that there are small differences among those types of controllers in terms of path tracking.
Funder
Ministry of Trade, Industry and Energy
Ministry of Land, Infrastructure and Transport
Subject
Control and Optimization,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献