A Cost–Benefit Analysis Framework for Power System Resilience Enhancement Based on Optimization via Simulation Considering Climate Changes and Cascading Outages

Author:

Ciapessoni Emanuele1ORCID,Cirio Diego1ORCID,Pitto Andrea1ORCID

Affiliation:

1. Ricerca sul Sistema Energetico—RSE S.p.A., 20134 Milano, Italy

Abstract

Achieving a good level of resilience to extreme events caused by severe weather conditions is a major target for operators in modern power systems due to the increasing frequency and intensity of extreme weather phenomena. Moreover, regulatory authorities are pushing transmission and distribution operators to prepare resilience plans suitably supported by Cost–Benefit Analyses (CBAs). In this context, this paper proposes a CBA framework based on Optimization via Simulation (OvS) for the selection of the optimal portfolio of resilience enhancement measures. Starting from a comprehensive set of candidate grid hardening and operational measures, the optimal mix is identified by applying a novel two-step procedure based on an efficient application of the generalized pattern search heuristic technique. Risk indicators for the CBA are quantified, accounting for probabilistic models of climate changes. Moreover, the potential cascading outages due to multiple component failures provoked by extreme events are simulated on selected scenarios. The examples carried out on an IEEE test system show the effectiveness of the approach in identifying the best portfolio of resilience enhancement measures depending on climate change projections and costs of the measures, while the application to the model of a large portion of the Italian EHV transmission system demonstrates the practicability of the approach in real-world studies to support operators in different power system management phases, from planning to operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3