An Evaluation of Sustainable Power System Resilience in the Face of Severe Weather Conditions and Climate Changes: A Comprehensive Review of Current Advances

Author:

Kasimalla Swetha Rani1,Park Kuchan1,Zaboli Aydin1ORCID,Hong Younggi1ORCID,Choi Seong Lok2,Hong Junho1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

2. Power Systems Engineering Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA

Abstract

Natural disasters pose significant threats to power distribution systems, intensified by the increasing impacts of climate changes. Resilience-enhancement strategies are crucial in mitigating the resulting social and economic damages. Hence, this review paper presents a comprehensive exploration of weather management strategies, augmented by recent advancements in machine learning algorithms, to show a sustainable resilience assessment. By addressing the unique challenges posed by diverse weather conditions, we propose flexible and intelligent solutions to navigate disaster complications effectively. This proposition emphasizes sustainable practices that not only address immediate disaster complications, but also prioritize long-term resilience and adaptability. Furthermore, the focus extends to mitigation strategies and microgrid technologies adapted to distribution systems. Through statistical analysis and mathematical formulations, we highlight the critical role of these advancements in mitigating severe weather conditions and ensuring the system reliability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3