Study the Effect of Winglet Height Length on the Aerodynamic Performance of Horizontal Axis Wind Turbines Using Computational Investigation

Author:

Abdelghany Eslam S.12,Sarhan Hesham H.3,Alahmadi Raed4ORCID,Farghaly Mohamed B.5ORCID

Affiliation:

1. Mechanical Power Department, Faculty of Engineering, Al-Baha University, Al-Baha 65799, Saudi Arabia

2. Aeronautical Engineering Department, Institute of Aviation Engineering and Technology (I.A.E.T), Egyptian Aviation Academy, Imbaba Airport, Giza 12815, Egypt

3. Mechanical Engineering Department, Faculty of Engineering, Port Said University, Port Said 42511, Egypt

4. Vice Dean of Quality and Development, Faculty of Engineering, Al-Baha University, Al-Baha 65799, Saudi Arabia

5. Mechanical Engineering Department, Faculty of Engineering, Fayoum University, El-Fayoum 63514, Egypt

Abstract

Tip vortices are one of the most critical phenomena facing rotary wings such as propellers and wind turbine blades and lead to changes in the aerodynamic parameters of blades. The winglet (WL) device is considered one of the most significant passive flow control devices. It is used to diminish the strength of vortices at the blade tip, enhance the aerodynamic characteristics of turbine rotor blades, and thereby increase the overall turbine efficiency. The main objective of this research is to improve the aerodynamic characteristics of wind turbines by adding a winglet at the blade tip. An optimum turbine blade profile was taken to build the turbine rotor geometry. The turbine has three blades with a radius of 0.36 m, and the NACA4418 airfoil blade sections were used to build the blade profile. The computational domain was created by ANSYS software, and the model was validated for spalart-allmaras and k-ω SST turbulence models with experimental measurements. The computational model was solved for blade shapes without and with tip winglets. Various winglet height lengths per blade radius (WHLR) of 0.008, 0.02, 0.04, 0.05, 0.06, 0.07, and 0.08 were studied for a 90-degree cant-angle and a constant design tip speed ratio of 4.92. Generally, the results illustrate that the performance characteristics of the turbine rotor were improved by using the tip winglet. The lift-to-drag ratio coefficient (CL/CD) and power coefficient (Cp) are increasing with increasing WHLR until they reach the highest improvement value, and then they start to decrease gradually. The optimum WHLR is about 0.042, with a percentage improvement in the lift-to-drag ratio (CL/CD) and power coefficient (Cp) related to the blade without winglet of about 11.6% and 6.9%, respectively, and an increase in the thrust force of 14.8%. This is mainly caused by decreasing the vortex strength near the tip region and improving the characteristics of stall behaviors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3