Risk Assessment of Agricultural Drought Disaster on the Huaibei Plain of China Based on the Improved Connection Number and Entropy Information Diffusion Method

Author:

Chen Menglu,Ning Shaowei,Jin Juliang,Cui Yi,Wu Chengguo,Zhou YuliangORCID

Abstract

In recent years, drought disaster has occurred frequently in China, causing significant agricultural losses. It is increasingly important to assess the risk of agricultural drought disaster (ADD) and to develop a targeted risk management approach. In this study, an ADD risk assessment model was established. First, an improved fuzzy analytic hierarchy process based on an accelerated genetic algorithm (AGA-FAHP) was used to build an evaluation indicator system. Then, based on the indicators, the ADD assessment connection numbers were established using the improved connection number method. Finally, the entropy information diffusion method was used to form an ADD risk assessment model. The model was applied to the Huaibei Plain in Anhui Province (China), with the assessment showing that, in the period from 2008 to 2017, the plain was threatened continuously by ADD, especially during 2011–2013. The risk assessment showed that southern cities of the study area were nearly twice as likely to be struck by ADD as northern cities. Meanwhile, the eastern region had a higher frequency of severe and above-grade ADD events (once every 21 years) than the western region (once every 25.3 years). Therefore, Huainan was identified as a high-risk city and Huaibei as a low-risk city, with Suzhou and Bengbu more vulnerable to ADD than Fuyang and Bozhou. Understanding the spatial dynamics of risk in the study area can improve agricultural system resilience by optimizing planting structures and by enhancing irrigation water efficiency. This model could be used to provide support for increasing agricultural drought disaster resilience and risk management efficiency.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3