Regional Risk Assessment for Urban Major Hazards Using Hybrid Method of Information Diffusion Theory and Entropy

Author:

Zhou Xinlong1ORCID,Ning Xinhui1,Zheng Longzhi2,Jiang Dongzhu3,Gao Peipei4,Fu Dashun1

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China

2. Hubei Anyuan Safety and Environmental Protection Technology Company Limited, Wuhan, Hubei 430040, China

3. School of Industrial Design, Hubei University of Technology, Wuhan, Hubei 430068, China

4. Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute, Wuhan, Hubei 430064, China

Abstract

Urban regional risk is a complex nonlinear problem that encounters insufficient information, randomness, and uncertainty. To accurately assess the overall urban risk, a regional risk assessment model for urban public safety was proposed by using the information diffusion theory. The entropy theory was employed to optimize the information diffusion model to reduce the uncertainty. A framework of urban regional risk assessment model based on information diffusion and entropy was constructed. Finally, a case study of Hangzhou city in China was presented to demonstrate the performance of the proposed method. Results showed that the proposed method could successfully estimate the urban regional risk of Hangzhou city. The risk levels and probabilities of different hazard indicators were basically consistent with reality. The hazards with respect to industrial and mining accidents and road traffic accidents were extremely serious. More than 80 deaths from industrial and mining accidents would occur almost every 3 years, and more than 400 deaths of RTA would occur almost every 2.6 years. Moreover, centralized intervals of the risk level associated with five hazards were found, where urban risks were more likely to happen and had higher vulnerability. It could provide guidance for the government’s urban safety management and policy-making.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3