Decomposition-Based Multi-Step Forecasting Model for the Environmental Variables of Rabbit Houses

Author:

Ji Ronghua1,Shi Shanyi1,Liu Zhongying2,Wu Zhonghong2

Affiliation:

1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

2. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

Abstract

To improve prediction accuracy and provide sufficient time to control decision-making, a decomposition-based multi-step forecasting model for rabbit house environmental variables is proposed. Traditional forecasting methods for rabbit house environmental parameters perform poorly because the coupling relationship between sequences is ignored. Using the STL algorithm, the proposed model first decomposes the non-stationary time series into trend, seasonal, and residual components and then predicts separately based on the characteristics of each component. LSTM and Informer are used to predict the trend and residual components, respectively. The aforementioned two predicted values are added together with the seasonal component to obtain the final predicted value. The most important environmental variables in a rabbit house are temperature, humidity, and carbon dioxide concentration. The experimental results show that the encoder and decoder input sequence lengths in the Informer model have a significant impact on the model’s performance. The rabbit house environment’s multivariate correlation time series can be effectively predicted in a multi-input and single-output mode. The temperature and humidity prediction improved significantly, but the carbon dioxide concentration did not. Because of the effective extraction of the coupling relationship among the correlated time series, the proposed model can perfectly perform multivariate multi-step prediction of non-stationary time series.

Funder

CARS

Beijing Innovation Consortium of Agriculture Research System

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3