Investigation of Aerosol Peak Height Effect on PBL and Volcanic Air Mass Factors for SO2 Column Retrieval from Space-Borne Hyperspectral UV Sensors

Author:

Choi WoneiORCID,Yang Jiwon,Lee Hanlim,Roozendael Michel Van,Koo Ja-HoORCID,Park Junsung,Kim Daewon

Abstract

We investigate the effects of aerosol peak height (APH) and various parameters on the air mass factor (AMF) for SO2 retrieval. Increasing aerosol optical depth (AOD) leads to multiple scattering within the planetary boundary layer (PBL) and an increase in PBL SO2 AMF. However, under high AOD conditions, aerosol shielding effects dominate, which causes the PBL SO2 AMF to decrease with increasing AOD. The height of the SO2 layer and the APH are found to significantly influence the PBL SO2 AMF under high AOD conditions. When the SO2 and aerosol layers are of the same height, aerosol multiple scattering occurs dominantly within the PBL, which leads to an increase in the PBL SO2 AMF. When the APH is greater than the SO2 layer height, aerosol shielding effects dominate, which decreases the PBL SO2 AMF. When the SO2 and aerosol layers are of the same height under low AOD and solar zenith angle (SZA) conditions, increased surface reflectance is found to significantly increase the PBL SO2 AMF. However, high AOD dominates the surface reflectance contribution to PBL SO2 AMF. Under high SZA conditions, Rayleigh scattering contributes to a reduction in the light path length and PBL SO2 AMF. For volcanic SO2 AMF, high SZA enhances the light path length within the volcanic SO2 layer, as well as the volcanic SO2 AMF, because of the negligible photon loss by Rayleigh scattering at high altitudes. High aerosol loading and an APH that is greater than the SO2 peak height lead to aerosol shielding effects, which reduce the volcanic SO2 AMF. The SO2 AMF errors are also quantified as a function of uncertainty in the input data of AOD, APH, and surface reflectance. The SO2 AMF sensitivities and error analysis provided here can be used to develop effective error reduction strategies for satellite-based SO2 retrievals.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3