Using Satellite Interferometry to Infer Landslide Sliding Surface Depth and Geometry

Author:

Intrieri EmanueleORCID,Frodella WilliamORCID,Raspini Federico,Bardi Federica,Tofani Veronica

Abstract

Information regarding the shape and depth of a landslide sliding surface (LSS) is fundamental for the estimation of the volume of the unstable masses, which in turn is of primary importance for the assessment of landslide magnitude and risk scenarios as well as in refining stability analyses. To assess an LSS is not an easy task and is generally time-consuming and expensive. In this work, a method existing in the literature, based on the inclination of movement vectors along a cross-section to estimate the depth and geometry LSSs, is used for the first time while exploiting satellite interferometric data. Given the advent of satellite interferometric data and the related increasing availability of spatially dense and accurate measurements, we test the effectiveness of this method—here named the vector inclination method (VIM)—to four case landslides located in Italy characterized by different types of movement, kinematics and volume. Geotechnical and geophysical information of the LSS is used to validate the method. Our results show that each of the presented cases provides useful insight into the validity of VIM using satellite interferometric data. The main advantages of VIM applied to satellite interferometry are that it enables estimation of the LSS with a theoretical worldwide coverage, as well as with no need for onsite instrumentation or even direct access; however, a good density of measurement points in both ascending and descending geometry is necessary. The combined use of VIM and traditional investigations can provide a more accurate LSS model.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference64 articles.

1. Methods to Estimate the Surfaces Geometry and Uncertainty of Landslide Failure Surface;Jaboyedoff,2015

2. Combining field data with infrared thermography and DInSAR surveys to evaluate the activity of landslides: the case study of Randazzo Landslide (NE Sicily)

3. The use of the automatic inclinometric system for landslide early warning: the case of Cabella Ligure (North-Western Italy)

4. Monitoring Displacement on the Mannen Rockslide in Western Norway;Kristensen,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3