Deformation Characteristics and Activation Dynamics of the Xiaomojiu Landslide in the Upper Jinsha River Basin Revealed by Multi-Track InSAR Analysis

Author:

Ma Xu1ORCID,Peng Junhuan1,Su Yuhan1ORCID,Shi Mengyao2ORCID,Zheng Yueze13ORCID,Li Xu1,Jiang Xinwei1

Affiliation:

1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

3. Beijing Institute of Surveying and Mapping, Beijing 100038, China

Abstract

The upper Jinsha River, located in a high-mountain gorge with complex geological features, is highly prone to large-scale landslides, which could result in the formation of dammed lakes. Analyzing the movement characteristics of the typical Xiaomojiu landslide in this area contributes to a better understanding of the dynamics of landslides in the region, which is of great significance for landslide risk prediction and analysis. True displacement data on the surface of landslides are crucial for understanding the morphological changes in landslides, providing fundamental parameters for dynamic analysis and risk assessment. This study proposes a method for calculating the actual deformation of landslide bodies based on multi-track Interferometric Synthetic Aperture Radar (InSAR) deformation data. It iteratively solves for the optimal true deformation vector of the landslide on a per-pixel basis under a least-squares constraint based on the assumption of consistent displacement direction among adjacent points on the landslide surface. Using multi-track Sentinel data from 2017 to 2023, the line of sight (LOS) accumulative de-formation of the Xiaomojiu landslide was obtained, with a maximum LOS deformation of −126 mm/year. The true surface displacement of the Xiaomojiu landslide after activation was calculated using LOS deformation. The development of two rotational sub-slipping zones on the landslide body is inferred based on the distribution of actual displacements along the central profile line. Analysis of temporal changes in water body area data revealed that the Xiaomojiu landslide was activated after a barrier lake event and continuously moved due to the influence of higher water levels’ in the river channel. In conclusion, the proposed method can be applied to calculate the true surface displacement of landslides with complex mechanisms for analyzing the movement status of landslide bodies. Furthermore, the spatiotemporal analysis of the Xiaomojiu landslide characteristics can support analyzing the mechanisms of similar landslides in the Jinsha River Basin.

Funder

National Natural Science Foundation of China

Shanxi Transportation Holdings Group, Company, Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3