NA-DGRU: A Dual-GRU Traffic Speed Prediction Model Based on Neighborhood Aggregation and Attention Mechanism

Author:

Tian Xiaoping1,Zou Changkuan1,Zhang Yuqing1,Du Lei1,Wu Song1

Affiliation:

1. College of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Abstract

Traffic prediction is an important part of the Intelligent Transportation System (ITS) and has broad application prospects. However, traffic data are affected not only by time, but also by the traffic status of other nearby roads. They have complex temporal and spatial correlations. Developing a means for extracting specific features from them and effectively predicting traffic status such as road speed remains a huge challenge. Therefore, in order to reduce the speed prediction error and improve the prediction accuracy, this paper proposes a dual-GRU traffic speed prediction model based on neighborhood aggregation and the attention mechanism: NA-DGRU (Neighborhood aggregation and Attention mechanism–Dual GRU). NA-DGRU uses the neighborhood aggregation method to extract spatial features from the neighborhood space of the road, and it extracts the correlation between speed and time from the original features and neighborhood aggregation features through two GRUs, respectively. Finally, the attention model is introduced to collect and summarize the information of the road and its neighborhood in the global time to perform traffic prediction. In this paper, the prediction performance of NA-DGRU is tested on two real-world datasets, SZ-taxi and Los-loop. In the 15-, 30-, 45- and 60-min speed prediction results of NA-DGRU on the SZ-taxi dataset, the RMSE values were 4.0587, 4.0683, 4.0777 and 4.0851, respectively, and the MAE values were 2.7387, 2.728, 2.7393 and 2.7487; on the Los-loop dataset, the RMSE values for the speed prediction results were 5.1348, 6.1358, 6.7604 and 7.2776, respectively, and the MAE values were 3.0281, 3.6692, 4.0567 and 4.4256, respectively. On the SZ-taxi dataset, compared with other baseline methods, NA-DGRU demonstrated a maximum reduction in RMSE of 6.49% and a maximum reduction in MAE of 6.17%; on the Los-loop dataset, the maximum reduction in RMSE was 31.01%, and the maximum reduction in MAE reached 24.89%.

Funder

Key Laboratory of Police Internet of Things Application Ministry of Public Security. People’s Republic of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference46 articles.

1. Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions;Yin;IEEE Trans. Intell. Transp. Syst.,2022

2. A Summary of Traffic Flow Forecasting Methods;Wei;J. Highw. Transp. Res. Dev.,2004

3. (2006). Modeling Financial Time Series with S-PLUS®, Springer.

4. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results;Williams;J. Transp. Eng.,2003

5. Application of improved version of multi verse optimizer algorithm for modeling solar radiation;Ikram;Energy Rep.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3