ST-D3DDARN: Urban traffic flow prediction based on spatio-temporal decoupled 3D DenseNet with attention ResNet

Author:

Chen Jing,Yang GuoweiORCID,Zhang Zhaochong,Wang Wei

Abstract

Urban traffic flow prediction plays a crucial role in intelligent transportation systems (ITS), which can enhance traffic efficiency and ensure public safety. However, predicting urban traffic flow faces numerous challenges, such as intricate temporal dependencies, spatial correlations, and the influence of external factors. Existing research methods cannot fully capture the complex spatio-temporal dependence of traffic flow. Inspired by video analysis in computer vision, we represent traffic flow as traffic frames and propose an end-to-end urban traffic flow prediction model named Spatio-temporal Decoupled 3D DenseNet with Attention ResNet (ST-D3DDARN). Specifically, this model extracts multi-source traffic flow features through closeness, period, trend, and external factor branches. Subsequently, it dynamically establishes global spatio-temporal correlations by integrating spatial self-attention and coordinate attention in a residual network, accurately predicting the inflow and outflow of traffic throughout the city. In order to evaluate the effectiveness of the ST-D3DDARN model, experiments are carried out on two publicly available real-world datasets. The results indicate that ST-D3DDARN outperforms existing models in terms of single-step prediction, multi-step prediction, and efficiency.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3