Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting

Author:

Mohamad Radzi Putri Nor Liyana1,Akhter Muhammad Naveed2,Mekhilef Saad13ORCID,Mohamed Shah Noraisyah4ORCID

Affiliation:

1. Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Electrical Engineering, Rachna College of Engineering and Technology (A Constituent College of University of Engineering and Technology Lahore), Gujranwala 52250, Pakistan

3. School of Software and Electrical Engineering, Swinburne University, Hawthorn, VIC 3122, Australia

4. Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Advancements in renewable energy technology have significantly reduced the consumer dependence on conventional energy sources for power generation. Solar energy has proven to be a sustainable source of power generation compared to other renewable energy sources. The performance of a photovoltaic (PV) system is highly dependent on the amount of solar penetration to the solar cell, the type of climatic season, the temperature of the surroundings, and the environmental humidity. Unfortunately, every renewable’s technology has its limitation. Consequently, this prevents the system from operating to a maximum or optimally. Achieving a precise PV system output power is crucial to overcoming solar power output instability and intermittency performance. This paper discusses an intensive review of machine learning, followed by the types of neural network models under supervised machine learning implemented in photovoltaic power forecasting. The literature of past researchers is collected, mainly focusing on the duration of forecasts for very short-, short-, and long-term forecasts in a photovoltaic system. The performance of forecasting is also evaluated according to a different type of input parameter and time-step resolution. Lastly, the crucial aspects of a conventional and hybrid model of machine learning and neural networks are reviewed comprehensively.

Funder

Ministry of Higher Education, Malaysia

UM International Collaboration

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3