Uncertainty Evaluation of a Gas Turbine Model Based on a Nonlinear Autoregressive Exogenous Model and Monte Carlo Dropout

Author:

Cajahuaringa Armando1,Palacios Rubén Aquize1,Mauricio Villanueva Juan M.2ORCID,Morales-Villanueva Aurelio1ORCID,Machuca José1,Contreras Juan1,Rodríguez Bautista Kiara1

Affiliation:

1. Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rimac, Lima 150101, Peru

2. Universidade Federal da Paraíba Campus I, Joao Pessoa 58051-900, PB, Brazil

Abstract

Gas turbines are thermoelectric plants with various applications, such as large-scale electricity production, petrochemical industry, and steam generation. In order to optimize the operation of a gas turbine, it is necessary to develop system identification models that allow for the development of studies and analyses to increase the system’s reliability. Current strategies for modeling complex and non-linear systems can be based on artificial intelligence techniques, using autoregressive neural networks of the NARX and LSTM type. In this context, this work aims to develop a model of a gas turbine capable of estimating the rotation speed of the turbine and simultaneously estimating the uncertainty associated with the estimation. These methodologies are based on artificial neural networks and the Monte Carlo dropout simulation method. The results were obtained from experimental data from a 215 MW gas turbine, getting the best model with a MAPE of 0.02% and an uncertainty associated with the turbine rotation speed of 2.2 RPM.

Funder

Universidad Nacional de Ingeniería, Lima-Perú

Publisher

MDPI AG

Reference20 articles.

1. Ravichandran, T., Liu, Y., Kumar, A., and Srivastava, A. (2023, January 5–7). Convolutional Neural Networks for Gas Turbine Exhaust Gas Temperature and Power Predictions. Proceedings of the 2023 IEEE International Conference on Prognostics and Health Management (ICPHM), Montreal, QC, Canada.

2. Marin, G., Osipov, B., Titov, A., Akhmetshin, A., Shubina, A., and Novoselova, M. (2022, January 9–11). Improving the Performance of Power Plants with Gas Turbine Units. Proceedings of the 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russian.

3. Sheludko, V.N., Sokolov, P.V., Andrievsky, O.A., and Andrievskaya, N.V. (2023, January 24–26). Gas Turbine Selective Control System. Proceedings of the 2023 XXVI International Conference on Soft Computing and Measurements (SCM), Saint Petersburg, Russian.

4. Fentaye, A.D., Baheta, A.T., Gilani, S.I., and Kyprianidis, K.G. (2019). A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace, 6.

5. Mai, C.V., Spiridonakos, M.D., Chatzi, E.N., and Sudret, B. (2023, July 18). Surrogate Modelling for Stochastic Dynamical Systems by Combining NARX Models and Polynomial Chaos Expansions. Technical report RSUQ-2016-002, Eidgenössische Technische Hochschule Zürich, Germany. Available online: https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/risk-safety-and-uncertainty-dam/publications/reports/RSUQ-2016-002.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3