Bonding Mechanical Properties between SMA Fiber and ECC Matrix under Direct Pullout Loads

Author:

Yang Zhao12ORCID,Gong Xiaojun1,Wu Qing1,Fan Lin1

Affiliation:

1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China

2. Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China

Abstract

SMAF-ECC material composed of shape memory alloy fiber (SMAF) and engineered cementitious composite (ECC) has good bending and tensile properties, as well as good crack self-healing ability, energy consumption, and self-centering ability. The bond behavior between fiber and matrix is crucial to the effective utilization of the superelasticity of SMAF. The experimental study considered three variables: SMA fiber diameter, fiber end shape, and bond length. The pullout stress–strain curve of SMAF was obtained, and the maximum pullout stress, maximum bond stress, and fiber utilization rate were analyzed. Compared with the straight end and the hook end, the maximum pullout stress of the specimen using the knotted end SMAF is above 900 MPa, the fiber undergoes martensitic transformation, and the fiber utilization rate is above 80%, indicating that the setting of the knotted end can give full play to the superelasticity of the SMAF. Within the effective bond length range, increasing the bond length can increase the maximum anchorage force of the knotted end SMAF. Increasing the fiber diameter can increase the maximum pullout stress and maximum anchoring force of the knotted end SMAF but reduce the utilization rate of SMA fiber. This study provides a reliable theoretical basis for the bonding properties between SMAF and ECC.

Funder

National Natural Science Foundation of China

Excellent Young and Middle-aged Science and Technology Innovation Team Plan of Hubei Provincial Department of Education

National College Students’ innovation and entrepreneurship training program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3