Comparative Study of Experimental and Modeling of Fly Ash-Based Concrete

Author:

Khan KaffayatullahORCID,Ahmad Ayaz,Amin Muhammad NasirORCID,Ahmad WaqasORCID,Nazar Sohaib,Arab Abdullah Mohammad Abu

Abstract

The application of supplementary cementitious materials (SCMs) in concrete has been reported as the sustainable approach toward the appropriate development. This research aims to compare the result of compressive strength (C-S) obtained from the experimental method and results estimated by employing the various modeling techniques for the fly-ash-based concrete. Although this study covers two aspects, an experimental approach and modeling techniques for predictions, the emphasis of this research is on the application of modeling methods. The physical and chemical properties of the cement and fly ash, water absorption and specific gravity of the aggregate used, surface area of the cement, and gradation of the aggregate were analyzed in the laboratory. The four predictive machine learning (PML) algorithms, such as decision tree (DT), multi-linear perceptron (MLP), random forest (RF), and bagging regressor (BR), were investigated to anticipate the C-S of concrete. Results reveal that the RF model was observed more exact in investigating the C-S of concrete containing fly ash (FA), as opposed to other employed PML techniques. The high R2 value (0.96) for the RF model indicates the high precision level for forecasting the required output as compared to DT, MLP, and BR model R2 results equal 0.88, 0.90, and 0.93, respectively. The statistical results and cross-validation (C-V) method also confirm the high predictive accuracy of the RF model. The highest contribution level of the cement towards the prediction was also reported in the sensitivity analysis and showed a 31.24% contribution. These PML methods can be effectively employed to anticipate the mechanical properties of concretes.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, at King Faisal University, Al-Ahsa, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3