The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys

Author:

Yang Haodong1ORCID,Zhang Yifan1,Zhang An1,Stein Frank2ORCID,Xu Zhengbing134ORCID,Tang Zhichao1,Ren Dangjing1,Zeng Jianmin134

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China

2. Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

3. Key Laboratory of High-Performance Structural Materials and Thermo-Surface Processing, Guangxi University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China

4. Centre of Ecological Collaborative Innovation for Aluminium Industry in Guangxi, Nanning 530004, China

Abstract

The mechanism of solid-state dendrite formation in high-aluminum Fe-Al alloys is not clear. Applying an in-situ observation technique, the real-time formation and growth of FeAl solid-state dendrites during the eutectoid decomposition of the high-temperature phase Fe5Al8 is visualized. In-situ experiments by HT-CSLM reveal that proeutectoid FeAl usually does not preferentially nucleate at grain boundaries regardless of rapid or slow cooling conditions. The critical radii for generating morphological instability are 1.2 μm and 0.9 μm for slow and rapid cooling, respectively. The morphology after both slow and rapid cooling exhibits dendrites, while there are differences in the size and critical instability radius Rc, which are attributed to the different supersaturation S and the number of protrusions l. The combination of crystallographic and thermodynamic analysis indicates that solid-state dendrites only exist on the hypoeutectoid side in high-aluminum Fe-Al alloys. A large number of lattice defects in the parent phase provides an additional driving force for nucleation, leading to coherent nucleation from the interior of the parent phase grains based on the orientation relationship {3¯30}Fe5Al8//{1¯10}FeAl, <111¯>Fe5Al8//<111¯>FeAl. The maximum release of misfit strain energy leads to the preferential growth of the primary arm of the nucleus along <111¯> {1¯10}. During the rapid cooling process, a large supersaturation is induced in the matrix, driving the Al atoms to undergo unstable uphill diffusion and causing variations in the concentration gradient as well as generating constitutional undercooling, ultimately leading to morphological instability and the growth of secondary arms.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China Joint Fund

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3