Fe–Al materials for structural applications at high temperatures: Current research at MPIE

Author:

Palm Martin1

Affiliation:

1. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

Abstract

Abstract Fe – Al-based materials possess a number of properties which make them highly interesting for the development of new light-weight structural materials. However, lack of strength at high temperatures and limited ductility at ambient temperatures so far has hindered any wider application of these materials. Recent progress achieved within an inter-departmental research initiative at the Max-Planck-Institut für Eisenforschung GmbH is reviewed here. Based on a sound knowledge of physical and thermodynamic properties and careful analysis of the phase equilibria, various alloy systems have been investigated which offer different mechanisms for strengthening Fe – Al-based materials at high temperatures. By applying these mechanisms Fe – Al-based alloys with sufficient strength for structural applications at least between 650 – 800 °C have been developed. For these alloys processing routes such as rolling and forging have been demonstrated. Low ductility is still a crucial issue, but measures exist for improving ductility, e. g. by refining the microstructure through thermo-mechanical treatment. It has also been shown that iron aluminides not only show superior corrosion resistance in oxidising and sulphidising atmospheres but also in other hostile environments like carburising atmospheres and under molten salts.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference175 articles.

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3