A Study of Dispersed, Thermally Activated Limestone from Ukraine for the Safe Liming of Water Using ANN Models

Author:

Trach YuliiaORCID,Trach RomanORCID,Kalenik MarekORCID,Koda EugeniuszORCID,Podlasek AnnaORCID

Abstract

Liming surface water is a fairly popular method of increasing the pH values and decreasing the concentration of phosphates and heavy metals. According to the Environmental Protection Agency (EPA) recommendations, the increase of water pH should not exceed 1.5. If surface water is the source of water supply, liming is a process that reduces water contamination. This should prevent the creation of an additional load for the water treatment plants in urban settlements. This article is an interdisciplinary research study aiming to (1) determine and compare the doses of new dispersed, thermally activated limestone and natural limestone, (2) find the relation between dose value and initial water parameters (pH, Eh and total mineralization), and (3) create an artificial neural network (ANN) model to predict changes in water pH values according to EPA recommendations. Recommended doses were obtained from experimental studies, and those of dispersed, thermally activated limestone were lower than the doses of natural limestone. Neural networks were used to predict the changes in water pH values when adding different doses of limestone with different initial water parameters using the ANN model. Four ANN models with different activation functions and loss function optimizers were tested. The best results were obtained for the network with the ReLU activation function for hidden layers of neurons and Adam’s loss function optimizer (MAPE = 14.1%; R2 = 0.847). Further comparison of the results of the loss function and the results of calculating the quality metric for the training and validation dataset has shown that the created ANN can be used to solve the set research issue.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Analysis of Water Consumption in the Campus of Warsaw University of Life Sciences - SGGW in Years 2012-2016

2. Technological Conditions for the Coagulation of Wastewater from Cosmetic Industry

3. Rola wapnowania w stawowej i jeziornej produkcji rybackiej oraz ochronie wód;Lirski;Nawozy Nawożenie,2006

4. Restructuring of Fish Assemblages in Swedish Lakes Following Amelioration of Acid Stress through Liming

5. The Ichthyofauna of the Dystrophic Lake Smolak (Northern Poland) in Light of Selected Physical and Chemical Water Conditions Thirty Years after the Conclusion of Liming and Fertilization;Hutorowicz;Fish. Aquat. Life,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3