Abstract
Healthy eating is an essential element to prevent obesity that will lead to chronic diseases. Despite numerous efforts to promote the awareness of healthy food consumption, the obesity rate has been increased in the past few years. An automated food recognition system is needed to serve as a fundamental source of information for promoting a balanced diet and assisting users to understand their meal consumption. In this paper, we propose a novel Lightweight Neural Architecture Search (LNAS) model to self-generate a thin Convolutional Neural Network (CNN) that can be executed on mobile devices with limited processing power. LNAS has a sophisticated search space and modern search strategy to design a child model with reinforcement learning. Extensive experiments have been conducted to evaluate the model generated by LNAS, namely LNAS-NET. The experimental result shows that the proposed LNAS-NET outperformed the state-of-the-art lightweight models in terms of training speed and accuracy metric. Those experiments indicate the effectiveness of LNAS without sacrificing the model performance. It provides a good direction to move toward the era of AutoML and mobile-friendly neural model design.
Funder
Universiti Sains Malaysia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献