A Lightweight Hybrid Model with Location-Preserving ViT for Efficient Food Recognition

Author:

Sheng Guorui1ORCID,Min Weiqing23ORCID,Zhu Xiangyi1,Xu Liang1,Sun Qingshuo1,Yang Yancun1,Wang Lili1,Jiang Shuqiang23

Affiliation:

1. School of Information and Electrical Engineering, Ludong University, Yantai 264025, China

2. Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Food-image recognition plays a pivotal role in intelligent nutrition management, and lightweight recognition methods based on deep learning are crucial for enabling mobile deployment. This capability empowers individuals to effectively manage their daily diet and nutrition using devices such as smartphones. In this study, we propose an Efficient Hybrid Food Recognition Net (EHFR–Net), a novel neural network that integrates Convolutional Neural Networks (CNN) and Vision Transformer (ViT). We find that in the context of food-image recognition tasks, while ViT demonstrates superiority in extracting global information, its approach of disregarding the initial spatial information hampers its efficacy. Therefore, we designed a ViT method termed Location-Preserving Vision Transformer (LP–ViT), which retains positional information during the global information extraction process. To ensure the lightweight nature of the model, we employ an inverted residual block on the CNN side to extract local features. Global and local features are seamlessly integrated by directly summing and concatenating the outputs from the convolutional and ViT structures, resulting in the creation of a unified Hybrid Block (HBlock) in a coherent manner. Moreover, we optimize the hierarchical layout of EHFR–Net to accommodate the unique characteristics of HBlock, effectively reducing the model size. Our extensive experiments on three well-known food image-recognition datasets demonstrate the superiority of our approach. For instance, on the ETHZ Food–101 dataset, our method achieves an outstanding recognition accuracy of 90.7%, which is 3.5% higher than the state-of-the-art ViT-based lightweight network MobileViTv2 (87.2%), which has an equivalent number of parameters and calculations.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightweight Food Recognition via Aggregation Block and Feature Encoding;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-22

2. Food Computing for Nutrition and Health;2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3