Overview and Choice of Artificial Intelligence Approaches for Night-Time Adaptive Optics Reconstruction

Author:

García Riesgo FranciscoORCID,Suárez Gómez Sergio Luis,Santos Jesús DanielORCID,Díez Alonso Enrique,Sánchez Lasheras FernandoORCID

Abstract

Adaptive optics (AO) is one of the most relevant systems for ground-based telescopes image correction. AO is characterized by demanding computational systems that must be able to quickly manage large amounts of data, trying to make all the calculations needed the closest to real-time. Furthermore, next generations of telescopes that are already being constructed will demand higher computational requirements. For these reasons, artificial neural networks (ANNs) have recently become one alternative to commonly used tomographic reconstructions based on several algorithms as the least-squares method. ANNs have shown its capacity to model complex physical systems, as well as predicting values in the case of nocturnal AO where some models have already been tested. In this research, a comparison in terms of quality of the outputs given and computational time needed is presented between three of the most common ANN topologies used nowadays, to obtain the one that fits better these AO systems requirements. Multi-layer perceptron (MLP), convolutional neural networks (CNN) and fully convolutional neural networks (FCN) are considered. The results presented determine the way forward for the development of reconstruction systems based on ANNs for future telescopes, as the ones being under construction for solar observations.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Multi-object adaptive optics on-sky results with Raven;Lardière,2014

2. Adaptive telescope with laser probe-Isoplanatism and cone effect;Tallon;Astron. Astrophys.,1990

3. Optical performance of fully and partially compensated adaptive optics systems using least-squares and minimum variance phase reconstructors

4. History and Principles of Shack-Hartmann Wavefront Sensing

5. Principles of Adaptive Optics;Tyson,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3