Machine Learning-Based Detection Technique for NDT in Industrial Manufacturing

Author:

Niccolai AlessandroORCID,Caputo Davide,Chieco Leonardo,Grimaccia FrancescoORCID,Mussetta MarcoORCID

Abstract

Fluorescent penetrant inspection (FPI) is a well-assessed non-destructive test method used in manufacturing for detecting cracks and other flaws of the product under test. This is a critical phase in the mechanical and aerospace industrial sector. The purpose of this work was to present the implementation of an automated inspection system, developing a vision-based expert system to automate the inspection phase of the FPI process in an aerospace manufacturing line. The aim of this process was to identify the defectiveness status of some mechanical parts by the means of images. This paper will present, test and compare different machine learning architectures to perform the automated defect detection on a given dataset. For each test sample, several images at different angles were captured to properly populate the input dataset. In this way, the defectiveness status should be found combining the information contained in all the pictures. In particular, the system was designed for increasing the reliability of the evaluations performed on the airplane part, by implementing proper artificial intelligence (AI) techniques to reduce current human operators’ effort. The results show that, for applications in which the dataset available is quite small, a well-designed feature extraction process before the machine learning classifier is a very important step for achieving high classification accuracy.

Funder

ERA-LEARN 2020

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3