Widespread Ability of Ligninolytic Fungi to Degrade Hazardous Organic Pollutants as the Basis for the Self-Purification Ability of Natural Ecosystems and for Mycoremediation Technologies

Author:

Pozdnyakova Natalia,Dubrovskaya Ekaterina,Schlosser DietmarORCID,Kuznetsova Svetlana,Sigida Elena,Grinev Vyacheslav,Golubev Sergei,Kryuchkova Elena,Varese Giovanna CristinaORCID,Turkovskaya Olga

Abstract

The ability of sixteen wood- and soil-inhabiting basidiomycete strains and four ascomycete strains to degrade the most hazardous, widespread, and persistent pollutants (polycyclic aromatic hydrocarbons, oxyethylated nonylphenol, alkylphenol, anthraquinone-type synthetic dyes, and oil) was found. The disappearance of the pollutants, their main metabolites, and some adaptive properties (activities of ligninolytic enzymes, the production of emulsifying compounds and exopolysaccharides) were evaluated. The toxicity of polycyclic aromatic hydrocarbons decreased during degradation. New data were obtained regarding (1) the dependence of the completeness of polycyclic aromatic hydrocarbon degradation on the composition of the ligninolytic enzyme complex; (2) the degradation of neonol AF9-12 by higher fungi (different accessibilities of the oxyethyl chain and the aromatic ring of the molecules to different fungal genera); and (3) the production of an emulsifying agent in response to the presence in the cultivation medium of hydrophobic pollutants as the common property of wood- and soil-inhabiting basidiomycetes and ascomycetes. Promise for use in mycoremediation was shown in the wood-inhabiting basidiomycetes Pleurotus ostreatus f. Florida, Schizophyllum commune, Trametes versicolor MUT 3403, and Trametes versicolor DSM11372; the litter-decomposing basidiomycete Stropharia rugosoannulata; and the ascomycete Cladosporium herbarum. These fungi degrade a wide range of pollutants without accumulation of toxic metabolites and produce ligninolytic enzymes and emulsifying compounds.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3