High-Efficiency Conversion of Bread Residues to Ethanol and Edible Biomass Using Filamentous Fungi at High Solids Loading: A Biorefinery Approach

Author:

Kawa-Rygielska Joanna,Pietrzak Witold,Lennartsson Patrik R.ORCID

Abstract

Bread residues represent a significant fraction of retail food wastes, becoming a severe environmental challenge and an economic loss for the food sector. They are, however, an attractive resource for bioconversion into value-added products. In this study, the edible filamentous fungi Neurospora intermedia and Aspergillus oryzae were employed for the production of bioethanol and high-protein biomass by cultivation on enzymatically liquefied bread-waste medium at 150 g/L solids. The fermentation of hydrolysate by N. intermedia resulted in the ethanol titer of 32.2 g/L and biomass yield of 19.2 g/L with ca. 45% protein. However, the fermentation ended with a considerable amount of residual fermentable sugars; therefore, the liquid medium after the first fermentation was distilled and fermented again by two fungal strains (N. intermedia and A. oryzae). The fermentations resulted in the production of additional ethanol and biomass. A. oryzae showed better performance in the production of biomass, while the other strain yielded more ethanol. The final products’ yield ranged 0.29–0.32 g EtOH/g and 0.20–0.22 g biomass/g bread waste depending on the strain used in the second fermentation. The study shows that valorization of bread residuals by fungi is a promising option for the production of biofuels and foodstuff within the circular bioeconomy approach.

Funder

Wroclaw University of Environmental and Life Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3