Geochemical Association Rules of Elements Mined Using Clustered Events of Spatial Autocorrelation: A Case Study in the Chahanwusu River Area, Qinghai Province, China

Author:

Zhang BaoyiORCID,Jiang Zhengwen,Chen Yiru,Cheng Nanwei,Khan Umair,Deng JiqiuORCID

Abstract

The spatial distribution of elements can be regarded as a numerical field of concentration values with a continuous spatial coverage. An active area of research is to discover geologically meaningful relationships among elements from their spatial distribution. To solve this problem, we proposed an association rule mining method based on clustered events of spatial autocorrelation and applied it to the polymetallic deposits of the Chahanwusu River area, Qinghai Province, China. The elemental data for stream sediments were first clustered into HH (high–high), LL (low–low), HL (high–low), and LH (low–high) groups by using local Moran’s I clustering map (LMIC). Then, the Apriori algorithm was used to mine the association rules among different elements in these clusters. More than 86% of the mined rule points are located within 1000 m of faults and near known ore occurrences and occur in the upper reaches of the stream and catchment areas. In addition, we found that the Middle Triassic granodiorite is enriched in sulfophile elements, e.g., Zn, Ag, and Cd, and the Early Permian granite quartz diorite (P1γδο) coexists with Cu and associated elements. Therefore, the proposed algorithm is an effective method for mining coexistence patterns of elements and provides an insight into their enrichment mechanisms.

Funder

National Natural Science Foundation of China

China Geological Survey Project

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3