Construction, Test and Application of a Tungsten Metallogene Named MGW11: Case Studies in China

Author:

Li Jie,Gong QingjieORCID,Zhang Bimin,Liu Ningqiang,Wu Xuan,Yan Taotao,Li Xiaolei,Wu Yuan

Abstract

Geochemical gene is a new promising concept proposed recently in the discrimination and traceability of geological materials and is also a useful tool to recognize geochemical anomalies in mineral exploration. Based on the lithogenes of LG01 and LG03, geological materials can be classified into nine types of LG_CR compositionally. With respect to geological materials with 11 types of LG_CR, in order to eliminate the lithological influence and to further narrow the prospecting target area, a tungsten metallogene named MGW11 is proposed for geochemical tungsten exploration after the tungsten metallogene MGW. Six weathering profiles of 11 types of LG_CR developed on granitic intrusions in different areas in China are selected to test the stable properties such as heredity and inheritance of MGW11 and MGW. The results indicate that MGW11 and MGW metallogenes illustrate stable properties during rock weathering regardless of weathering degrees, although gene variations of MGW11 and MGW are also observed during extreme weathering. Based on the regional geochemistry survey data in the Lianyang area in south China, where stream sediments are mostly 11 types of LG_CR compositionally, geochemical maps of mineralization similarities of MGW11 and MGW are contoured, and the anomaly areas are determined on the mineralization similarity value of ≥40%. Comparing the tungsten deposits and anomaly areas determined on MGW11 and MGW metallogenes spatially, a total of six polymetallic W deposits recognized in the study area are all located in the anomaly areas. Therefore, mineralization similarities of MGW11 and MGW can be viewed as useful integrated indices on geochemical tungsten exploration. In areas with 11 types of LG_CR compositionally, anomaly areas determined on the MGW11 are smaller than those on the MGW, which indicates that MGW11 is more efficient than MGW in targeting W deposits during tungsten prospecting because of the elimination of the lithological influence.

Funder

Key Laboratory of Geochemical Exploration, Ministry of Natural Resources

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3