Research on the Sensing Characteristics of an Integrated Grid-like Sensor Based on a Triboelectric Nanogenerator

Author:

Zhao Shiyu1,Han Guanghui1,Deng Huaxia2,Ma Mengchao1ORCID,Zhong Xiang1

Affiliation:

1. School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Abstract

With the development of the integration and miniaturization of sensing devices, the concept of self-sensing devices has been proposed. A motion state is self-sensed via the structure or integration of an actuator in the construction of a sensing unit. This device is then used to capture the perception and measurement of states such as position, displacement, and speed. A triboelectric nanogenerator converts mechanical energy into electrical energy through the coupling effect of contact generation and electrostatic induction, which represents one of the reliable ways through which to realize integrated sensing. In this world, the power generation technology of the TENG is applied to a sensing device. The sensing characteristics of a grid-like TENG are designed and analyzed in freestanding triboelectric mode. Firstly, a relation model of displacement, velocity, voltage, and charge is established. The charge-transfer increment and current amounts are linearly related to the velocity. The open-circuit voltage has a positive relationship with the displacement. The maximum open-circuit voltage and the maximum charge transfer are fixed values, and they are only related to the inherent parameters of a triboelectric nanogenerator. Next, the sensor model is constructed using COMSOL Multiphysics 6.0. The simulation results show that the relationships between output voltage and charge transfer, as well as those between the increments of charge transfer, velocity, and displacement, are consistent with the results derived from the formula. Finally, a performance test of the designed sensor is carried out, and the results are consistent with the theoretical deduction and simulation. After analysis and processing of the output electrical signal by the host computer, it can feedback the frequency and speed value of the measured object. In addition, the output signal is stable, and there is no large fluctuation or attenuation during the 521-s vibration test. Because the working unit of the sensor is thin filmed, it is small in size, easy to integrate, and has no external power supply; moreover, it can be integrated into a device to realize the self-sensing of a motion state.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3