Optimal Sensor Set for Decoding Motor Imagery from EEG

Author:

Dillen Arnau123ORCID,Ghaffari Fakhreddine2ORCID,Romain Olivier2ORCID,Vanderborght Bram34ORCID,Marusic Uros56ORCID,Grosprêtre Sidney7ORCID,Nowé Ann8ORCID,Meeusen Romain1ORCID,De Pauw Kevin13ORCID

Affiliation:

1. Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium

2. Equipes Traitement de l’Information et Systèmes, UMR 8051, CY Cergy Paris Université, Ećole Nationale Supeŕieure de l’Eĺectronique et de ses Applications (ENSEA), Centre national de la recherche scientifique (CNRS), 95000 Cergy, France

3. Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium

4. Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and imec, 1050 Brussels, Belgium

5. Institute for Kinesiology Research, Science and Research Centre Koper, 6000 Koper, Slovenia

6. Department of Health Sciences, Alma Mater Europaea-ECM, 2000 Maribor, Slovenia

7. Laboratory Culture Sport Health and Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, 25000 Besancon, France

8. Artificial Intelligence Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium

Abstract

Brain–computer interfaces (BCIs) have the potential to enable individuals to interact with devices by detecting their intention from brain activity. A common approach to BCI is to decode movement intention from motor imagery (MI), the mental representation of an overt action. However, research-grade electroencephalogram (EEG) acquisition devices with a high number of sensors are typically necessary to achieve the spatial resolution required for reliable analysis. This entails high monetary and computational costs that make these approaches impractical for everyday use. This study investigates the trade-off between accuracy and complexity when decoding MI from fewer EEG sensors. Data were acquired from 15 healthy participants performing MI with a 64-channel research-grade EEG device. After performing a quality assessment by identifying visually evoked potentials, several decoding pipelines were trained on these data using different subsets of electrode locations. No significant differences (p = [0.18–0.91]) in the average decoding accuracy were found when using a reduced number of sensors. Therefore, decoding MI from a limited number of sensors is feasible. Hence, using commercial sensor devices for this purpose should be attainable, reducing both monetary and computational costs for BCI control.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3