FPGA Implementation of a Deep Learning Acceleration Core Architecture for Image Target Detection

Author:

Yang Xu1ORCID,Zhuang Chen2ORCID,Feng Wenquan1,Yang Zhe1,Wang Qiang1

Affiliation:

1. School of Electronic & Information Engineering, Beihang University, Beijing 100080, China

2. Hefei Innovation Research Institute of Beihang University, Hefei 230012, China

Abstract

Due to the flexibility and ease of deployment of Field Programmable Gate Arrays (FPGA), more and more studies have been conducted on developing and optimizing target detection algorithms based on Convolutional Neural Networks (CNN) models using FPGAs. Still, these studies focus on improving the performance of the core algorithm and optimizing hardware structure, with few studies focusing on the unified architecture design and corresponding optimization techniques for the algorithm model, resulting in inefficient overall model performance. The essential reason is that these studies do not address arithmetic power, speed, and resource consistency. In order to solve this problem, we propose a deep learning acceleration core architecture based on FPGAs, which is designed for target detection algorithms with CNN models, using multi-channel parallelization of CNN network models to improve the arithmetic power, using scheduling tasks and intensive computation pipelining to meet the algorithm’s data bandwidth requirements and unifying the speed and area of the orchestrated computation matrix to save hardware resources. The proposed framework achieves 14 Frames Per Second (FPS) inference performance of the TinyYolo model at 5 Giga Operations Per Second (GOPS) with 30% higher running clock frequency, 2–4 times higher arithmetic power, and 28% higher Digital Signal Processing (DSP) resource utilization efficiency using less than 25% of FPGA resource usage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3