BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship Detection in High-Resolution SAR Images

Author:

Sun ZhongzhenORCID,Leng Xiangguang,Lei Yu,Xiong Boli,Ji Kefeng,Kuang Gangyao

Abstract

Due to its great application value in the military and civilian fields, ship detection in synthetic aperture radar (SAR) images has always attracted much attention. However, ship targets in High-Resolution (HR) SAR images show the significant characteristics of multi-scale, arbitrary directions and dense arrangement, posing enormous challenges to detect ships quickly and accurately. To address these issues above, a novel YOLO-based arbitrary-oriented SAR ship detector using bi-directional feature fusion and angular classification (BiFA-YOLO) is proposed in this article. First of all, a novel bi-directional feature fusion module (Bi-DFFM) tailored to SAR ship detection is applied to the YOLO framework. This module can efficiently aggregate multi-scale features through bi-directional (top-down and bottom-up) information interaction, which is helpful for detecting multi-scale ships. Secondly, to effectively detect arbitrary-oriented and densely arranged ships in HR SAR images, we add an angular classification structure to the head network. This structure is conducive to accurately obtaining ships’ angle information without the problem of boundary discontinuity and complicated parameter regression. Meanwhile, in BiFA-YOLO, a random rotation mosaic data augmentation method is employed to suppress the impact of angle imbalance. Compared with other conventional data augmentation methods, the proposed method can better improve detection performance of arbitrary-oriented ships. Finally, we conduct extensive experiments on the SAR ship detection dataset (SSDD) and large-scene HR SAR images from GF-3 satellite to verify our method. The proposed method can reach the detection performance with precision = 94.85%, recall = 93.97%, average precision = 93.90%, and F1-score = 0.9441 on SSDD. The detection speed of our method is approximately 13.3 ms per 512 × 512 image. In addition, comparison experiments with other deep learning-based methods and verification experiments on large-scene HR SAR images demonstrate that our method shows strong robustness and adaptability.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3