Anomaly Detection of Control Moment Gyroscope Based on Working Condition Classification and Transfer Learning

Author:

Zhang Kuan1,Wang Shuchen2,Wang Saijin1,Xu Qizhi2

Affiliation:

1. Beijing Aerospace Control Center, Beijing 100094, China

2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

The process of human exploration of the universe has accelerated, and aerospace technology has developed rapidly. The health management and prognosis guarantee of spacecraft systems has become an important basic technology. However, with thousands of telemetry data channels and massive data scales, spacecraft systems are increasingly complex. The anomaly detection that relied on simple threshold judgment and expert manual annotation in the past is no longer applicable. In addition, the particularity of the anomaly detection task leads to the lack of fault data for training. Therefore, a data-driven deep transfer learning-based approach is needed for rapid analysis and accurate detection of large-scale data. The control moment gyroscope (CMG) is a significant inertial actuator in the process of large-scale, long-life spacecraft in-orbit operation and mission execution. Its anomaly detection plays a major role in the prevention and elimination of early failures. Based on the research of SincNet and Long Short-Term Memory (LSTM) networks, this paper proposed a Sinc-LSTM neural network based on transfer learning and working condition classification for CMG anomaly detection. First, a two-stage pre-training method is proposed to alleviate the data imbalance, using the Mars Reconnaissance Orbiter (MRO) dataset and a satellite dataset from NASA. Second, the Sinc-LSTM network is designed to enhance the local fitting and long-period memory ability of the model for CMG time series data. Finally, a dynamic threshold judgment anomaly detection method based on working condition classification is designed to accommodate threshold changes for CMG full-cycle anomaly detection. The method is validated on the spacecraft CMG dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3