A New Fault Classification Approach Based on Decision Tree Induced by Genetic Programming

Author:

Rocha Rogério C. N.1,Soares Rafael A.1ORCID,Santos Laércio I.2,Camargos Murilo O.1ORCID,Ekel Petr Ya.3ORCID,Libório Matheus P.4ORCID,dos Santos Angélica C. G.1ORCID,Vidoli Francesco5ORCID,D’Angelo Marcos F. S. V.6ORCID

Affiliation:

1. Graduate Program in Computer Modeling and Systems, State University of Montes Claros, Av. Rui Braga, sn, Vila Mauricéia, Montes Claros 39401-089, Brazil

2. Campus Montes Claros, Federal Institute of Norte de Minas Gerais, Rua Dois, 300-Village do Lago I, Montes Claros 39404-058, Brazil

3. Graduate Program in Informatics, Pontifical Catholic University of Minas Gerais, Belo Horizonte 30535-901, Brazil

4. Institute of Continuing Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte 30535-901, Brazil

5. Department of Economics, Society and Politics, University of Urbino, 61029 Urbino, Italy

6. Department of Computer Science, State University of Montes Claros, Av. Rui Braga, sn, Vila Mauricéia, Montes Claros 39401-089, Brazil

Abstract

This research introduces a new data-driven methodology for fault detection and isolation in dynamic systems, integrating fuzzy/Bayesian change point detection and decision trees induced by genetic programming for pattern classification. Tracking changes in sensor signals enables the detection of faults, and using decision trees generated by genetic programming allows for accurate categorization into specific fault classes. Change point detection utilizes a combination of fuzzy set theory and the Metropolis–Hastings algorithm. The primary contribution of the study lies in the development of a distinctive classification system, which results in a comprehensive and highly effective approach to fault detection and isolation. Validation is carried out using the Tennessee Eastman benchmark process as an experimental framework, ensuring a rigorous evaluation of the efficacy of the proposed methodology.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3