Application Research of Negative Pressure Wave Signal Denoising Method Based on VMD

Author:

Jiang Zhu12,Guo Ganghui1,Liu Boxiang3

Affiliation:

1. School of Energy and Power Engineering, Xihua University, Chengdu 610039, China

2. Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education, Chengdu 610039, China

3. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Abstract

The quality of pipeline leakage fault feature extractions deteriorates due to the influence of fluid pipeline running state and signal acquisition equipment. The pressure signal is characterized by high complexity, nonlinear and strong correlation. Therefore, traditional denoising methods have difficulty dealing with this kind of signal. In order to realize accurate leakage fault alarm and leak location, a denoising method based on variational mode decomposition (VMD) technology is proposed in this paper. Firstly, the intrinsic mode functions are screened out using the correlation coefficient. Secondly, information entropy is used to optimize the VMD decomposition layers k. Finally, based on the denoising signal, the inflection point of the negative pressure wave is extracted, and the position of the leakage point is calculated according to the time difference between the two inflection points. To verify the effectiveness of the algorithm, both laboratory experiments and real pipeline tests are conducted. Experimental results show that the method proposed by this paper can be used to effectively denoise the pressure signal. Furthermore, from the perspective of positioning accuracy, compared other methods, the proposed method can achieve a better positioning effect, as the positioning accuracy of the laboratory experiment reaches up to 0.9%, and that of the real pipeline test leakage point reaches up to 0.41%.

Funder

Open Research Subject of Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education

Energy and Power Engineering

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3