Workout Detection by Wearable Device Data Using Machine Learning

Author:

Yoshida Yutaka1,Yuda Emi1ORCID

Affiliation:

1. Center for Data-Driven Science and Artificial Intelligence, Tohoku University, Kawauchi 41, Aoba-ku, Sendai 980-8576, Japan

Abstract

There are many reports that workouts relieve daily stress and are effective in improving mental and physical health. In recent years, there has been a demand for quick and easy methods to analyze and evaluate living organisms using biological information measured from wearable sensors. In this study, we attempted workout detection for one healthy female (40 years old) based on multiple types of biological information, such as the number of steps taken, activity level, and pulse, obtained from a wristband-type wearable sensor using machine learning. Data were recorded intermittently for approximately 64 days and 57 workouts were recorded. Workouts adopted for exercise were yoga and the workout duration was 1 h. We extracted 3416 min of biometric information for each of three categories: workout, awake activities (activities other than workouts), and sleep. Classification was performed using random forest (RF), SVM, and KNN. The detection accuracy of RF and SVM was high, and the recall, precision, and F-score values when using RF were 0.962, 0.963, and 0.963, respectively. The values for SVM were 0.961, 0.962, and 0.962, respectively. In addition, as a result of calculating the importance of the feature values used for detection, sleep state (39.8%), skin temperature (33.3%), and pulse rate (13.2%) accounted for approximately 86.3% of the total. By applying RF or SVM to the biological information obtained from the wearable wristband sensor, workouts could be detected every minute with high accuracy.

Funder

JST-Mirai Program

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3