High-Speed Railways Interference Signal Characteristics and Multiple Remote References Denoising of Magnetotelluric Data in Jizhong Depression, China

Author:

Wang Gang123,Wang Dayong12,Meng Yinsheng12,Li Yongbo12,Wang Wenguo12,Zhu Wei12,Cui Aiming12,Zhao Yi12

Affiliation:

1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science, Langfang 065000, China

2. Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science, Langfang 065000, China

3. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China

Abstract

In the economically developed Beijing–Tianjin–Hebei region, magnetotelluric data are susceptible to contamination from cultural noise, which can be caused, for example, by urban stray currents, high-speed railways, or high-voltage lines. The multiple remote references method is an effective tool that can be used to suppress interference and improve signal-to-noise ratios. Therefore, this paper first introduces the basic principles of multiple remote references and then takes high-speed railway noise as an example. The characteristics of the time domain and frequency domain of the high-speed railway noise signals are analyzed. Then, we use two remote reference stations (with a single remote reference and multiple remote references) to process the data interfering with the high-speed railway and compare the results. Finally, the multiple remote references method is used to process the data for the entire section. Coupled with the known geological and seismic data, the inversion results well-reflect the deep underground geological structure.

Funder

National Key R&D Program of China

China Geological Survey Project

Chinese Academy of Geological Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3