Study on the Controlling Factors and Laws of Deep Carbonate Geothermal Reservoirs in the Jizhong Depression

Author:

Zhu Wei1234ORCID,Zhang Gege12,Li Mingwei12,Cui Aiming1,Wang Dayong13,Qiao Hanqing15,Wang Gang12,Zhang Qiang1234,Dai Peng1ORCID,Xu Wenqiang6ORCID

Affiliation:

1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. National Center for Geological Exploration Technology, Langfang 065000, China

3. Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China

4. Terrestrial Geophysical Research Center, China Geological Survey, Langfang 065000, China

5. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

6. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

Abstract

The absence of regional electrical data has constrained our comprehension of the deep geological structures in the Jizhong Depression. This limitation has impeded the exploration of factors and principles governing geothermal reservoirs. Historically, studies on these factors primarily centered on geothermal field attributes, such as anomalous geothermal flux, geothermal gradients, and deep Moho variations. In our research, we undertook an exhaustive interpretation of extended-period magnetotelluric readings. This was amalgamated with prior regional geological and geophysical studies to discern deep geological structural details pertinent to geothermal resource components, encompassing heat sources, pathways, reservoirs, and cap rocks. Our analysis spanned the foundational surface of the Cenozoic era, fault configurations, carbonate formation distribution, and layers with low velocity yet high conductivity. We also statistically evaluated geothermal wells, their density, and the water temperature attributes across various structural entities. This aided in comprehending how structural units influence thermal well features. Our research delineated the spatial interrelation between geothermal well distribution and deep geological structures, including carbonate rock distribution, Cenozoic thickness, fault patterns, and profound low-velocity, high-conductivity layers. Moreover, we scrutinized how structural unit types impact thermal well attributes, offering insights into the formation principles of deep carbonate geothermal reservoirs within the Jizhong Depression. Our findings suggest that the genesis of deep geothermal resources in the Jizhong Depression is swayed by regional geological conditions. Notably, the distribution of regional and especially deep geothermal wells is intimately tied to regional stratigraphy, structural designs, and profound geological structural traits. Furthermore, the temperature within geothermal wells correlates strongly with the burial depth, carbonate formation thickness, Cenozoic thickness, and proximity to fault channels responsible for fluid movement and heat transmission.

Funder

China Geological Survey Project

Basic Scientific Research Project of the Chinese National Nonprofit Institute

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3