Affiliation:
1. Marine Research Institute, Klaipeda University, H. Manto Str. 84, LT-92294 Klaipeda, Lithuania
Abstract
The use of 222 nm far-UVC radiation can be an effective means of disinfecting public buses against viruses, including SARS-CoV-2. However, it can cause degradation of the mechanical and visual properties of interior materials. The purpose of this study is to investigate the effects of 222 nm far-UVC radiation on the color and mechanical degradation of materials used to construct public bus interiors. This research work involves exposure of samples of materials commonly used in bus interiors to various levels of far-UVC radiation and measuring and evaluating changes in color and mechanical properties. The results of the study showed that far-UVC irradiation causes significant color degradation (∆E00 >5) in all the polymeric materials tested, after 290 J/cm2 radiant exposure. In addition, significant changes in mechanical properties were observed when evaluating elasticity modulus, elongation at ultimate strength, elongation at break, and tensile strength. A particularly large decrease in elongation at break (up to 26%) was observed in fiber-reinforced composite materials. The results of this study can be used as a guide for the development of protocols for the use of far-UVC disinfection in public transportation, which can help limit the transmission of infections while preserving the integrity and visual properties of bus interior materials.
Funder
European Regional Development Fund
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献