Wideband, High-Gain, and Compact Four-Port MIMO Antenna for Future 5G Devices Operating over Ka-Band Spectrum

Author:

Hussain Sayed Aqib1,Taher Fatma2ORCID,Alzaidi Mohammed S.3ORCID,Hussain Irshad4,Ghoniem Rania M.5,Sree Mohamed Fathy Abo6ORCID,Lalbakhsh Ali78ORCID

Affiliation:

1. Department of Electrical Engineering, Bahria University, Islamabad 44000, Pakistan

2. College of Technological Innovation, Zayed University, Dubai 19282, United Arab Emirates

3. Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

4. Department of CS and IT, University of Sargodha, Sargodha 40100, Pakistan

5. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

6. Department of Electronics and Communications Engineering, Arab Academy for Science, Technology and Maritime Transport, Cairo 11799, Egypt

7. School of Engineering, Macquarie University, Sydney, NSW 2109, Australia

8. School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

In this article, the compact, ultra-wideband and high-gain MIMO antenna is presented for future 5G devices operating over 28 GHz and 38 GHz. The presented antenna is designed over substrate material Roger RT/Duroid 6002 with a thickness of 1.52 mm. The suggested design has dimensions of 15 mm × 10 mm and consists of stubs with loaded rectangular patch. The various stubs are loaded to antenna to improve impedance bandwidth and obtain ultra-wideband. The resultant antenna operates over a broadband of 26.5–43.7 GHz, with a peak value of gain >8 dBi. A four-port MIMO configuration is achieved to present the proposed antenna for future high data rate devices. The MIMO antenna offers isolation <−30 dB with ECC of <0.0001. The antenna offers good results in terms of gain, radiation efficiency, envelop correlation coefficient (ECC), mean effective gain (MEG), diversity gain (DG), channel capacity loss (CCL), and isolation. The antenna hardware prototype is fabricated to validate the performance of the suggested design of the antenna achieved from software tools, and good correlation between measured and simulated results is observed. Moreover, the proposed work performance is also differentiated with literature work, which verifies that the suggested work is a potential applicant for future 5G compact devices operating over wideband and high gain.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3