Torrential Hazard Prevention in Alpine Small Basin through Historical, Empirical and Geomorphological Cross Analysis in NW Italy

Author:

Turconi LauraORCID,Tropeano Domenico,Savio Gabriele,Bono Barbara,De Sunil Kumar,Frasca MarcoORCID,Luino FabioORCID

Abstract

Debris flow is one of the most dangerous natural processes in mountain regions and it occur in a wide variety of environments throughout the world. In the Italian Alps, some tens of thousands of damaging debris flow and, in general, torrential floods associated to intense sediment transport in secondary catchments have been documented in the last 300 years. These have caused socio-economic damage, damage to anthropogenic structures or infrastructures and in many cases casualties. Often, in the same basins, the occurrence of debris-flow processes recurs many years later. Prediction can often be spatial and based on the magnitude of the largest known process, while the temporal forecast is the most uncertain. It is also possible to increase the resilience of the population and of the territory. The present study aims at investigating different levels of debris-flow hazard in urban areas on Alpine alluvial fans and proposes a strategy for debris-flow prevention based on historical research and on a simplified analytical approach, methods that also involve relatively low costs. For such analysis, Ischiator stream catchment (ca. 20 km2) and its alluvial fan (NW Italy) were selected. This area was partly affected by historical torrential flood associated to intense sediment transport and debris-flow processes. Present-day instability conditions along the slope and the stream network were detected and synthesized through surveys and aerial photo interpretation integrated by satellite images (period 1954–2021). An estimation of the potential amount of moving detritus, referred to as debris flow, was carried out regarding the June 1957 debris-flow event, based on the predictive models. The individual hazard index value was estimated based on different methods. The results indicate that 56% of the area is exposed to flood associated to intense sediment transport hazard, which fluctuates from high to very high levels; such results are supported by debris-flow historical records. Since today almost half of the settlement (Bagni di Vinadio) is located on potentially risk-exposed areas, the urban evolution policy adopted after the 1957 event failed to manage the risk connection to debris-flow activity.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference94 articles.

1. Recent and Past Floods in Northern Italy, River Flood Disasters;Govi,1997

2. Using Historical Documents for Landslide, Debris Flow and Stream Flood Prevention. Applications in Northern Italy

3. Floods in mountain environments: A synthesis

4. The temporally varying roles of rainfall, snowmelt and soil moisture for debris flow initiation in a snow-dominated system

5. Mechanism and risk assessment of landslide-triggered-debris flows: Lesson from the 1996.12. 6 Otari debris flow disaster, Nagano, Japan;Sassa,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3