Author:
Schippa ,Cilli ,Ciavola ,Billi
Abstract
One of the most relevant features of alluvial rivers concerns flow resistance, which depends on many factors including, mainly grain resistance and form drag. For natural sand-bed rivers, dunes furnish the most significant contribution and this paper provides an insight on it. To achieve this aim, momentum balance equations and energy balance equations are applied to free flow in alluvial channels, assuming hydrostatic pressure distribution over the cross sections confining the control volume, which includes a reference bed form pattern. The resulting equation in terms of energy grade accounts for an empirical bed form drag coefficient resulting from the actual flow pattern and bed form geometry. The model has been validated using a large selection of field data and it seems somewhat sensitive to the dune geometry and to the Nikuradse equivalent roughness, whereas it is shows greater sensitivity to the adopted grain surface resistance formula (e.g., Manning–Strickler formula).
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献